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Abstract. We derive a pair potential from tight binding further neighbour attraction that leads to
superconducting gap symmetry similar to that of the phenomenological spin fluctuation theory of
high temperature superconductors (Monthouxet al 1991Phys. Rev. Lett.673448). We show that
higher anisotropic d-wave than the simplest d-wave symmetry is one of the important ingredients
responsible for higher BCS characteristic ratio.

Pairing symmetry of the superconducting energy gap in high temperature superconductors
still remains an open problem a decade since its discovery. Various experimental results
which lead to conflicting conclusions resulted no concrete consensus to the theory of pairing
mechanism for highTc superconductors. However, there are strong evidences that the pairing
state of the cuprate superconductors could be d-wave like; experimental observations that
are sensitive to the phase [1] and nodes [2] of the gap, reported a sign reversal of the order
parameter supporting d-wave pairing. On the other hand, a group of experiments on the same
YBa2Cu3O7 (YBCO) material indicate existence of a significant s-component [3]; had YBCO
been a d-wave superconductor, it would be orthogonal to the s-wave state of Pb resulting
in zero Josephson supercurrent (while in experiment a well definedc-axis current is seen)
and there are strong evidences that the electron doped Nd2−xCexCuO4 superconductors are
s-wave type [4]. There are also indications, both from theories and experiments, that the
high Tc materials may have a mixed pairing symmetry (e.g., d± s or d + is/dxy etc) in the
presence of external magnetic field, magnetic impurity [5], interface effects etc [6]. In addition,
there exist important clues that indicate pairing state even in the bulk of the cuprates and in
the absence of magnetic field may also have a mixed pairing state, with a minor component
coexisting with predominant d-wave (i.e., d+eiθα scenario,α = s, dxy) [7]. The angle resolved
photoemission spectroscopy (ARPES) study by Kelleyet al provides strong indication that
the Bi2Sr2CaCu2O8+δ compound is d-wave like in the under- and optimally doped regime
whereasnot d-wave like in the slightly overdoped but high-Tc sample. Raman measurements
confirmed the unexpected behaviour of gap symmetry (from predominant dx2−y2 in under- or
optimally doped to anisotropic s-wave type in overdoped) by overdoping Bi2Sr2CaCu2O8+δ

and almost similar phenomena are also found in the other high-Tc material Tl2Ba2CuO6+δ [8].
Now, observation of any s component will have stringent constraints to various potential
theories of highTc superconductors, namely, antiferromagnetic spin fluctuation theory [9],
because, antiferromagnetic spin fluctuation theory leads to attraction in the d-wave channel
and pair breaking in the s-wave channel (but in a model calculation via spin fluctuation in heavy
fermion systems by Miyakeet al [10] indicates possibility of anisotropic s-wave pairing as
well). On the other hand, pairing mechanisms based on electron–phonon interactions, polarons
etc would be compatible with pure d-wave, pure s-wave or an admixture of the two [11].
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Therefore, it is evident from the above discussion that the symmetry of the order parameter
and the associated mechanism of pairing in highTc cuprates are not at all clear, but is essential
to have a first step development towards an understanding of the mystery of pairing mechanism.
The spin fluctuation theory is one of the potential theories of highTc superconductivity
which can account for a number of anomalous properties observed in cuprates. It is a
phenomenological theory with a few small parameters, like the phenomenological form
of the spin susceptibilityχ(Q), the magnetic coherence lengthξ , the magnon frequency
ωSF extracted from nuclear magnetic resonance (NMR) experiment [12]. The approximate
momentum distribution of the superconducting energy gap function obtained by the authors
of [9] is,

1SF (k) = 1(0)(coskxa − coskya)
∑
N

(coskxa + coskya)
N . (1)

This is not alowest orderd-wave symmetry as is usually considered in the literature. It was
Lenck and Carbotte, who first pointed out this fact [13]. They obtained the superconducting
gap function by using BCS theory with the phenomenological spin susceptibility as the pairing
interaction by using the fast-Fourier-transform technique, without any prior assumption about
the symmetry of the gap function. They concluded that the gap structure although it has
nodal lines alongkx = ky cannot have the simple form of coskxa − coskya with a the lattice
parameter. In a weak coupling theory language, in order to get a gap symmetry as1SF (k)

one needs a pair potential which also has the same symmetry. We show in a tight binding
picture by considering higher neighbours attraction that such potential is derivable up to the
third order term in equation (1). After obtaining the pair potential we calculate the explicit
structure of gap function thus obtained and found to be similar to that of Lenck and Carbotte.
We also point out that such higher anisotropic d-wave symmetry is key to understand the larger
21(k)max/kBTc BCS ratio.

In the spirit of the tight binding description assuming that the overlap of orbitals in different
unit cells is small, compared to the diagonal overlap values, the matrix elementV (k, k′) may
be written as,

V (Eq) =
∑
Eδ
VEδe

i Eq ERδ = V ro + 2
3∑
n=1

Vn(cosqxna + cosqyna) (2)

where ERδ = ±na locates nearest neighbours and further neighbours; since we shall only be
interested in the d-wave channel (i.e., in a square lattice we are not considering second, fifth
etc neighbour matrix elements as it gives rise to dxy, sxy channels). Thus we get, from the
requirement of singlet pairing symmetry i.e.,1(k) = 1(−k),

V (k, k′) = V ro +
∑
n

Vnf
n
k f

n
k′ +

∑
n

Vng
n
k g

n
k′ (3)

wheref nk (g
n
k ) = coskxna∓ coskyna, V ro is the on-site term (the labelr stands for repulsion,

but could be attractive as well giving rise to isotropic s wave pairing) and the third term in
equation (3) responsible for extended s-wave pairing will be omitted from further discussion.

In deriving equations (2), (3) we have taken into account attractions only along thex andy
axis neighbours. However, such attractive interaction between the fourth neighbours also gives
rise to an unconventional d-wave pairing channel, the pair potential for the fourth neighbour
interaction that leads to singlet d-wave pairing may be obtained as,

V (k, k′) = 2V4(coskx − cosky)(1 + 2 coskx cosky)(k→ k′)
+2V4(coskx − cosky)(2 sinkx sinky)(k→ k′) (4)

whereV4 indicates strength of fourth neighbour attraction.
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Thus considering only the d-wave channel one gets the anisotropic pair potential as,

V (k, k′) = V1fkfk′ + 4V3fkfk′gkgk′ + 2V4fkfk′ [(1 +dkxy )(1 +dk′xy ) + skxy sk′xy ]

+16V6fkfk′

(
g2
k −

skxy

2
− 3

4

)(
g2
k′ −

sk′xy

2
− 3

4

)
≈ Vfkfk′(1 +gkgk′ + g

2
kg

2
k′) (5)

where we assumed 2V1 = 4V3 = 4V4 = 16V6 =V (say) and considered only the appropriate
contributing terms inV4 andV6 that lead to the gap structure in equation (1) (in deducing the
second result of equation (5)). In equation (5)V1, V3, V4, V6 represents strength of attraction
between the first, third, fourth, sixth neighbours respectively and the momentum form factors
aredkxy = 2 sinkx sinky , skxy = 2 coskx cosky , fk = coskx − sinkx , gk = coskx + coskx ,
with f 2

k = (fk)2 andg2
k = (gk)2. The actual approximations involved to get the second result

of the above equation are,

2V4fkfk′ [(1 +dkxy )(1 +dk′xy ) + skxy sk′xy ] ∼ V
2 fkfk′

V6fkfk′(4g
2
k − 2skxy − 3)(4g2

k′ − 2sk′xy − 3) ∼ 16V6fkfk′g
2
kg

2
k′ .

(6)

This approximation is considered just to retain the form of the gap structure (1), however, the
full form of the potential, the first result of equation (5) will also be explicitly used. It turns out
that the full potential leads to results very close to that obtained in the spin fluctuation theory
whereas the form in equation (1) is just an artifact of the approximations used in [9].

We shall show now that the pair-potential in the second result of equation (5) can produce
the gap symmetry of the spin fluctuation theory given in equation (1) up to the third order term
i.e.,1(k) = 1(0)fk(1 + gk + g2

k ). (Note, in a weak coupling BCS theory one would tend to
think of a potential,V (k, k′) = VFkFk′ , whereFk = fk(1 + gk + g2

k ) should be essential to
produce the above gap symmetry.) Supposing the pair-potential in the second result of (5) does
produce the gap symmetry in (1) up to the third order term, we insert the pair potential (the
second result of equation (5)) and the corresponding gap function into the BCS gap equation,
1(k) = ∑′

k(Ek′)
−1 Vk,k′1(k

′) tanh(βEk′/2). Then comparing thek-dependence from both
sides of the gap equation one gets the required gap equation that produces the approximated
spin fluctuation (ASF) gap symmetry is obtained as,

1(0) =
∑
k′
(V/3)F 2

k′
1(0)

2Ek′
tanh

(
βEk′

2

)
. (7)

This is exactly the gap equation one would find using the pair potentialV (k, k′) = VFkFk′
which certainly produces the required gap symmetry1(k) = 1(0)fk(1+gk+g2

k ) (the pair vertex
in (7) is only renormalized toV/3). The symbols in equation (7) have their usual meanings
with the superconducting quasiparticle energy given by,Ek =

√
(εk − µ)2 + 12 (k), µ is

the chemical potential which controls the band filling with the help of a number conserving
equation. The temperature dependence of the chemical potential is taken care of in the self-
consistent numerical solutions of the gap equation. We use the band dispersionεk obtained from
the angle resolved photoemission experiment by Normanet al [14] for the Bi-based cuprates.
The dispersion gives experimentally measured hopping amplitudes up to fifth neighbours which
is plausible in the present calculation since further neighbours attractive pairing interaction is
considered.

Following the same principle as deriving equation (7) we get the gap equation for the higher
anisotropic d-wave (HAD) symmetry1(k) = 1(0)[f1(k) + f3(k) + f4a(k) + f4b(k) + f6(k)]
using the full potential i.e., the first result of the equation (5) as,

1(0) =
∑
k′
(V/5)F̃ 2

k′
1(0)

2Ek′
tanh

(
βEk′

2

)
(8)
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Figure 1. Momentum dependence of the superconducting energy gap function which has symmetry
of that of the approximate spin fluctuation (ASF) theory (up to third order in (1)). The required
attractive potential is derived within the approximation (6) (a). Note the strong resemblance of this
gap structure with that obtained by Lenck and Carbotte (cf. figure 1 of [13]). This higher anisotropic
d-wave gap function yields a 21(k)max/kBTc = 6 where the1(k)max is not at(kx, ky) = (0,±π)
but around(0,±1.57). (b) Momentum dependence of the superconducting energy gap function
when the attractive potential is derived exactly without the approximation (6) leading to higher
anisotropic d-wave (HAD) symmetry. Contrast, the deviation in the gap structure due to the
approximation (6) in (a). These gap structures (a, b) are indeed consistent with that obtained by
Lenck and Carbotte (cf. [13]). The exact HAD symmetry gap structure (b) although it has similar
structure to ASF symmetry, the gap becomes more sharply peaked in differentk directions. Unlike
the simplest d-wave its maximum occurs around(0,±1.41)which yields a 21(k)max/kBTc = 8.15,
the value very much consistent with the original spin fluctuation model [9]. The parameterV is
adjusted such that both the gap functions have the same bulkTc = 84 K at the band-fillingρ = 0.8.
Undoubtedly, these gap structures are quite different from thelowest orderusual d-wave symmetry
usually considered in the literature.

whereF̃k = f1(k) + f3(k) + f4a(k) + f4b(k) + f6(k) with f1(k) = (1/
√

2)fk, f3(k) = fkgk,
f4a(k) = (1/

√
2)fk(1 + skxy ), f4b(k) = (1/

√
2)fkdkxy ), f6(k) = fk(g2

k − skxy /2− 3/4). Now,
we present our numerical results in figures 1 and 2, for a fixed cut-off frequency�c = 500 K.
The bulkTc in all the figures is fixed atT = 84 K for the band fillingρ = 0.8, which required
a change inV in the superconducting gap equations (7) (8) and the same for the usual d-wave.
In figures 1(a), (b) we present thek-anisotropy of the gap function in the first Brillouin zone for
kx , ky , which clearly produces d-wave like solution i.e., nodal lines alongkx = ky directions as
well as change in the sign of the gap function. However, the overall anisotropy is very different
from the simplestlowest orderd-wave (1(k) =1(0)(coskxa − coskya)) form—but rather a
higher anisotropic d-wave. Figure 1(a) represents momentum anisotropy for the ASF model
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Figure 2. (a) Variation of the gap amplitude (1(0) in eV, see equations (1), (7), (8)) as a function
of temperature in Kelvin. Note, the amplitude1(0) for the usual d-wave and the ASF (under
approximation (6)) is almost the same whereas the HAD (without the approximation (6)) is quite
different. The gap opens up very fast belowTc in the HAD case. (b) The BCS characteristic ratio
1(k)max/kBTc as a function ofT/Tc in different models. The solid curve represents the result
for the derived approximated spin fluctuation (ASF) symmetry within the approximation (6); the
maximum of the gap opens up at a faster rate than the d-wave belowTc. The dotted line corresponds
to the HAD symmetry when no approximation (6) is included; this maximum gap has the fastest
growth with lowering in temperature belowTc. The dashed curve corresponds to a usuallowest
order d-wave. Therefore, the special momentum anisotropic form in the spin fluctuation theory
(Monthouxet al 1991Phys. Rev. Lett.67 3448) is one of the crucial ingredients for such a high
BCS characteristic ratio. (All the curves in the figure correspond toTc = 84 K at the band filling
ρ = 0.8.)

using gap equation (7) whereas the figure 1(b) represents the HAD symmetry using the gap
equation (8). The HAD symmetry gap has sharperk-anisotropy than the ASF model although
there exists overall similarity between the two, namely, the positions of maximum gap are
very close. Since the calculation of Lenck and Carbotte [13] does not assume any form of the
superconducting gap function and also does not include the retardation effect as in the original
spin fluctuation model [9], we can therefore certainly rely on comparing our results with those
of Lenck and Carbotte. A close comparison of our results with those of [13] will conclusively
demonstrate that the pair potential derived with distant neighbours attraction in the d-wave
channel in the present modeldoesproduce the gap symmetry of the spin fluctuation theory [9].
The present calculation thus may indicate that the phenomenological spin fluctuation theory
includes longer range interaction which might be derivable from a generalized interaction (2).
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In figure 1, the gap function shows more than one maximum (minimum) at the edges of the
Brillouin zone, very similar to that obtained in [13]. The maximum (minimum) is also displaced
from the usual position ((0,±π), (±π, 0)) in the simplest d-wave (cf. figure 1 and the caption).
Remarkably, this gap symmetry also produces a high value of 21(k)max/kBTc = 6 the same as
that obtained in [13] (cf. figure 2(b)). In figure 1(b) where we present the same as in figure 1(a)
but without the approximation (6) the BCS characteristic ratio 21(k)max/kBTc = 8.15. These
are values close to typical of what is known for high-Tc systems [9]. Note, however, there may
exist some differences between the two (work [13] and this one) in details because the band
dispersions used in the two calculations are different which does affect pairing symmetry.

Having discussed in detail the difference in thek-anisotropy of the (higher anisotropic
d-wave) HAD symmetry with that of the usual d-wave and that such symmetriesdo reproduce
the gap structure of the spin fluctuation theory, we now show explicitly in figures 2(a), (b)
that due to strong anisotropy such gaps have different thermal behaviour in comparison to the
usual d-wave which is principal cause for high value of 21(k)max/kBTc. In figure 2(a) the
amplitudes of higher anisotropic d-wave symmetries (with and without approximation (6)) and
that of the simple d-wave are displayed as a function of temperature (T )—all of them have
Tc = 84 K at a band-fillingρ = 0.8. In figure 2(b) we pick up the temperature dependencies
of the maximum gap of the three d-wave symmetries the same as in figure 2(a) and display
the1(k)max/kBTc as a function of the reduced temperatureT/Tc. The gap opens up below
Tc at the fastest rate for the HAD symmetry and at the slowest rate for the usual d-wave as the
temperature is lowered.

Finally, to summarize, we have derived a pair potential from further neighbours attraction
in the tight binding scenario which produces gap symmetry of the phenomenological spin
fluctuation theory. This study may particularly be justified from the fact that in models of spin
fluctuation mediated d-wave superconductivity an increase in the antiferromagnetic correlation
length occurs with underdoping. Such an effect has also been realized very recently from
angle resolved photoemission (ARPES) experiment by a well known group [16]. One of
their principal observations is as the doping decreases the maximum gap increases, but the
slope of the gap near the nodes decreases. This feature although consistent with d-wave
symmetry cannot be fit by the simplest d-wave form of the gap but to a more generalized
B(coskx − cosky) + (1− B)(cos 2kx − cos 2ky) whereB is a fitting parameter. (Needless to
say, in the present work consideration of only the first two terms of the first result in equation (5)
i.e., first and third neighbour interactions exactly reproduces this symmetry). This led them to
suggest the importance of longer range interaction in the theory of d-wave superconductivity
as one approaches the insulator. It is worth pointing out that such ARPES experiments in the
underdoped regime measure the pseudo-gap rather than the truly superconducting gap. In the
present calculation, a close look to the dispersion used in equations (7), (8) will indicate that
the Fermi surface (FS) is open in a certain direction i.e., the FS is gapped due to a pseudo-gap.
However, if the pseudo-gap could be ascribed to fluctuation effects of the order parameter, then
its value could be estimated by the mean-field BCS equation, while the truly superconducting
transition can be estimated only by calculations that include fluctuation effects. We thus
created an example that there exists in nature a pair potential (as we derive from real space)
analogous to the spin fluctuation theory which is one of the leading potential theories in
high temperature superconductors, despite the fact that the principal philosophy of the spin
fluctuation is different. We thus emphasized, the importance of inclusion of further neighbour
attraction in the usual d-wave theories as is also realized in the most recent experiment [16].
The Cu–O systems being in a complicated circuit, the effect of Coulomb repulsion may not be
adequately treated with only on-site repulsion and therefore, effective attractive potential may
be achieved only after considering more distant neighbour terms. With this calculation we
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also emphasized the role of gap anisotropy in BCS gap ratio which may be further improved
adopting a strong coupling approach [15]. The higher anisotropic d-wave symmetry as obtained
in this work will certainly be consistent with experimental studies in cuprates because of its
similarity with d-wave but will have the advantage of avoiding Coulomb repulsion. We believe,
this work along with [9, 12, 13, 16] will provide new insight to the usual d-wave theories of
superconductivity.

The author thanks Sreekantha Sil for stimulating communications and useful comments via
electronic mail on the subject. This work was partly supported by the Brazilian Funding
Agency FAPERJ, project No E-26/150.925/96-BOLSA.
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